
Python Polymorphism

June 9, 2024

0.1 Python Polymorphism
Dr. Labeed Al-Saad

The word “polymorphism” means “many forms”, and in programming it refers to meth-
ods/functions/operators with the same name that can be executed on many objects or classes.

0.2 Function Polymorphism
An example of a Python function that can be used on different objects is the len() function.

0.3 String
For strings len() returns the number of characters:

Example:

[1]: x = "Hello World!"

print(len(x))

12

0.4 Tuple
For tuples len() returns the number of items in the tuple:

Example:

[2]: mytuple = ("apple", "banana", "cherry")

print(len(mytuple))

3

0.5 Dictionary
For dictionaries len() returns the number of key/value pairs in the dictionary:

Example:

[3]: thisdict = {
"brand": "Ford",

1



"model": "Mustang",
"year": 1964

}

print(len(thisdict))

3

0.6 Class Polymorphism
Polymorphism is often used in Class methods, where we can have multiple classes with the same
method name.

For example, say we have three classes: Car, Boat, and Plane, and they all have a method called
move():

Example:

Different classes with the same method:

[4]: class Car:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def move(self):
print("Drive!")

class Boat:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def move(self):
print("Sail!")

class Plane:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def move(self):
print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car class
boat1 = Boat("Ibiza", "Touring 20") #Create a Boat class
plane1 = Plane("Boeing", "747") #Create a Plane class

for x in (car1, boat1, plane1):

2



x.move()

Drive!
Sail!
Fly!

**Look at the for loop at the end. Because of polymorphism we can execute the same method for
all three classes.

0.7 Inheritance Class Polymorphism
What about classes with child classes with the same name? Can we use polymorphism there?

Yes. If we use the example above and make a parent class called Vehicle, and make Car, Boat,
Plane child classes of Vehicle, the child classes inherits the Vehicle methods, but can override them:

Example:

Create a class called Vehicle and make Car, Boat, Plane child classes of Vehicle:

[5]: class Vehicle:
def __init__(self, brand, model):

self.brand = brand
self.model = model

def move(self):
print("Move!")

class Car(Vehicle):
pass

class Boat(Vehicle):
def move(self):

print("Sail!")

class Plane(Vehicle):
def move(self):

print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car object
boat1 = Boat("Ibiza", "Touring 20") #Create a Boat object
plane1 = Plane("Boeing", "747") #Create a Plane object

for x in (car1, boat1, plane1):
print(x.brand)
print(x.model)
x.move()

Ford
Mustang
Move!

3



Ibiza
Touring 20
Sail!
Boeing
747
Fly!

Child classes inherits the properties and methods from the parent class.

In the example above you can see that the Car class is empty, but it inherits brand, model, and
move() from Vehicle.

The Boat and Plane classes also inherit brand, model, and move() from Vehicle, but they both
override the move() method.

Because of polymorphism we can execute the same method for all classes.

4


	Python Polymorphism
	Function Polymorphism
	String
	Tuple
	Dictionary
	Class Polymorphism
	Inheritance Class Polymorphism

